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Abstract
Strong electron–electron interactions in dilute two-dimensional electron
systems in silicon lead to Pauli spin susceptibility growing critically at low
electron densities. This effect originates from renormalization of the effective
mass rather than the g-factor. The relative mass enhancement is system and
disorder independent, which suggests that it is determined by electron–electron
interactions only.

PACS numbers: 71.30.+h, 73.40.Qv, 71.18.+y

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Low-temperature transport in many clean two-dimensional (2D) electron systems manifests
critical behavior known as 2D metal–insulator transition [1–3]. This phenomenon takes place
at low carrier densities, where the ratio of the Coulomb and Fermi energies rs = EC/EF � 1,
and therefore, interactions play a crucial role. The 2D electron system in silicon turns out
to be a very convenient object for studies of the strongly correlated regime due to the large
interaction strengths (at electron densities ns ∼ 1011 cm−2, the interaction parameter reaches
rs ∼ 15) and high homogeneity of the samples. (To reach the same interaction strengths in
n-type GaAs/AlGaAs heterostructures, one would need to work at electron densities ns <

109 cm−2—such samples are not readily available as of yet.) Silicon has the additional
advantage that its electron spectrum has two almost degenerate valleys, which further enhances
the correlation effects. In (1 0 0) silicon MOSFETs, spin susceptibility of band electrons
(Pauli spin susceptibility) becomes enhanced by almost an order of magnitude at low electron
densities, growing critically near a sample-independent density nχ ≈ 8 × 1010 cm−2. Such
behavior is characteristic in the close vicinity of a phase transition. Interestingly, this dramatic
increase of the spin susceptibility is due to the strong renormalization of the effective mass
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while the g-factor remains practically constant and close to its band value. The effective mass
has also been measured in a dilute two-dimensional electron system in (1 1 1) silicon. The
mass renormalization as a function of the interaction parameter rs is in good agreement with
that measured in (1 0 0) silicon, indicating that the relative mass enhancement is system and
disorder independent, and is determined by electron–electron interactions only.

2. Experimental setup and samples

Measurements were made in an Oxford dilution refrigerator on two groups of samples. Low-
disordered (1 0 0) silicon metal-oxide-semiconductor field-effect transistors (MOSFETs) were
provided by T M Klapwijk (Kavli Institute of Nanoscience, TU Delft). The silicon oxide layer
was grown repeatedly during several stages of fabrication to decrease the number of charged
impurities and obtain a high-quality interface; as a result, in samples with an oxide thickness of
149 nm, peak mobilities of 3 m2 V−1 s−1 were achieved at T = 100 mK. The second advantage
of these samples is a very low contact resistance (in ‘conventional’ silicon samples, high contact
resistance becomes the main experimental obstacle in the low-density/low-temperature limit).
To minimize the contact resistance, thin slits in the gate metalization have been introduced,
which allows for maintaining high electron density near the contacts regardless of its value
in the main part of the sample. The second group of samples consisted of more disordered
(1 1 1) silicon MOSFETs similar to those previously used in [4]. Oxide thickness in these
samples was equal to 154 nm. In highest-mobility samples, the normal of the sample surface
was tilted from the [1 1 1] toward the [1 1 0] direction by a small angle of 8◦. Anisotropy
for electron transport in such samples does not exceed 5% at ns = 3 × 1011 cm−2 and
increases weakly with electron density, staying below 25% at ns = 3×1012 cm−2, as has been
determined in independent experiments.

The resistivity ρ was measured by a standard low-frequency lock-in technique. For
magnetization measurements, a novel method [5, 6] was used that entails modulating the
magnetic field with an auxiliary coil and measuring the ac current induced between the gate
and the 2D electron system. The magnetic field B was modulated with a small ac field, δB,
in the range 0.005–0.03 T at frequencies between f = 0.05 and 0.45 Hz. The in-phase and
out-of-phase components of the current between the gate and the 2D electron system were
measured with high precision (∼10−16 A) using a home-made current–voltage converter and
a lock-in amplifier. The real (in-phase) component of the current depends on the dissipative
conductivity σ of the sample. The imaginary (out-of-phase) current component, under the
condition that 2πf C � σ , is equal to

Im i = 2πf C

e

dμ

dB
δB, (1)

where C is the capacitance of the sample measured in the same experiment, and μ is the
chemical potential. Use of ultra-low frequencies ensures that 2πf C � σ , and the out-of-
phase current component is not contaminated by lateral transport effects. By applying the
Maxwell relation dM/dns = −dμ/dB, one can then obtain the magnetization M from the
measured i.

3. Results and discussion

3.1. Spin susceptibility in (1 0 0) silicon

A typical experimental trace of i(ns) in a parallel magnetic field of 5 T is displayed in
figure 1. The inset shows magnetization M(ns) in the metallic phase obtained by integrating
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Figure 1. Imaginary current component in the magnetization experiment as a function of the
electron density in a magnetic field of 5 T and T = 0.4 K. The grey area depicts the insulating
phase. Magnetization versus ns is displayed in the inset. Note that the maximum M is coincident
within the experimental uncertainty with μBns . (From [6].)

dM/dns = −dμ/dB with the integration constant M(∞) = Bχ0, where χ0 is the Pauli spin
susceptibility of non-interacting electrons. A nearly anti-symmetric jump of i(ns) about zero
on the y-axis (marked by the black arrow) separates the high- and low-density regions in
which the signal is positive and negative (M(ns) is decreasing and increasing), respectively.
Such a behavior is expected based on simple considerations. At low densities, all electrons
are spin polarized in a magnetic field, so for the simple case of non-interacting 2D electrons
one expects dμ/dB = −μB (at ns → 0, deep in the insulating regime, the capacitance of the
system vanishes and, therefore, the measured current approaches zero). At higher densities,
when the electrons start to fill the upper spin subband, M(ns) starts to decrease, and dμ/dB is
determined by the renormalized Pauli spin susceptibility χ and is expected to decrease with ns

due to reduction in the strength of electron–electron interactions. Finally, in the high-density
limit, the spin susceptibility approaches its ‘non-interacting’ value χ0, and dμ/dB should
approach zero. The onset of complete spin polarization—the electron density np at which the
electrons start to fill the upper spin subband—is given by the condition dμ/dB = 0 (M(ns)

reaches a maximum), as indicated by the black arrow in the figure. It is important that over the
range of magnetic fields used in the experiment (1.5–7 T), the maximum M coincides within
the experimental uncertainty with μBns , thus confirming that all the electrons are indeed spin
polarized below np. Note however that the absolute value of dμ/dB at ns < nc is reduced
in the experiment. This can be attributed to smearing of the minimum in i(ns) caused by the
possible influence of the residual disorder in the electron system, which is crucial in and just
above the insulating phase (see below). Another reason for the reduction in dμ/dB is the
electron–electron interactions (due to, e.g., the enhanced effective mass).

In figure 2(a), a set of curves is shown for the experimental dμ/dB versus electron density
in different magnetic fields. Experimental results in the range of magnetic fields studied do
not depend, within the experimental noise, on temperature below 0.6 K (down to 0.15 K which
was the lowest temperature achieved in this experiment). The onset of full spin polarization
shifts to higher electron densities with an increasing magnetic field. The grey area depicts
the insulating phase, which expands somewhat with B. Note that the range of magnetic fields
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Figure 2. (a) The experimental dμ/dB as a function of electron density in different magnetic
fields and T = 0.4 K. The curves are vertically shifted for clarity. The grey area depicts the
insulating phase. Note that the onset of full spin polarization in our experiment always takes place
in the metallic regime. (b) Scaling of the dμ/dB curves, normalized by magnetic field magnitude,
at high electron densities. The dashed line represents the ‘master curve’. The spin susceptibility
obtained by integrating the master curve (the dashed line) and raw data at B = 1.5, 3 and 6 T is
displayed in the inset. (From [6].)

used in the experiment is restricted from below by the condition that dμ/dB crosses zero in
the metallic regime. In figure 2(b), it is shown how these curves, normalized by the magnetic
field, collapse in the partially polarized regime onto a single ‘master curve’. The existence
of such scaling verifies proportionality of the magnetization to B and establishes a common
zero level for the experimental traces. Integration of the master curve over ns yields the
spin susceptibility χ = M/B, as shown in the inset to figure 2(b). Also shown is the spin
susceptibility obtained by integration of raw curves at B = 1.5, 3 and 6 T, which, within the
experimental error, yield the same dependence.

This method of measuring the spin susceptibility, being the most direct, suffers, however,
from the possible influence of the unknown diamagnetic contribution to the measured dμ/dB,
which arises from the finite width of the 2D electron layer. To verify that this influence
is negligible, another two independent methods to determine χ have been employed. The
second method is based on marking the electron density np at which dμ/dB = 0 and which
corresponds to the onset of complete spin polarization, as mentioned above. The so-determined
polarization density np(B) can be easily converted into χ(ns) via χ = μBnp/B. Note that
in contrast to the value of dμ/dB, the polarization density np is practically not affected by
the possible influence of the diamagnetic shift. The third method for measuring np and χ ,
insensitive to the diamagnetic shift, relies on analyzing the magnetocapacitance, C. In a high
magnetic field, a step-like feature emerges on the C(ns) curves and shifts to higher electron
densities with the increasing field (for the raw experimental data, see [6]). This feature
corresponds to the thermodynamic density of states abruptly changing when the electrons’
spins become completely polarized. As above, it allows one to determine the electron density
of the full spin polarization.

In figure 3, the summary of the results is shown for the Pauli spin susceptibility as a
function of ns , obtained using all three methods described above. The excellent agreement
between the results obtained by all of the methods establishes that a possible influence of the
diamagnetic shift is negligible and, therefore, the validity of the data including those at the
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Figure 3. Dependence of the Pauli spin susceptibility on electron density obtained by all three
methods described in the text: integral of the master curve (the dashed line), dμ/dB = 0 (circles)
and magnetocapacitance (squares). The dotted line is a guide to the eye. Also shown by a solid
line is the transport data of [7]. Inset: the polarization field as a function of the electron density
determined from the magnetization (circles) and magnetocapacitance (squares) data. The symbol
size for the magnetization data reflects the experimental uncertainty, and the error bars for the
magnetocapacitance data extend to the middle of the jump in C. The data for Bc are described by
a linear fit which extrapolates to a density nχ close to the critical density nc for the B = 0 MIT.
(From [6].)

lowest electron densities is justified. There is also good agreement between these results and
the data obtained by the transport experiments of [7]. This adds credibility to the transport data
and confirms that full spin polarization occurs at the field Bc; however, it should be noted that
evidence for the phase transition can only be obtained from thermodynamic measurements.
The magnetization data extend to lower densities than the transport data, and larger values of
χ are reached, exceeding the ‘non-interacting’ value χ0 by almost an order of magnitude. The
Pauli spin susceptibility behaves critically close to nχ : χ ∝ ns/(ns − nχ). This is in favor
of the occurrence of a spontaneous spin polarization (either Wigner crystal or ferromagnetic
liquid) at low ns , although in currently available samples, the growing disorder at ns ∼ nc

conceals the origin of the low-density phase. In other words, so far, one can only reach an
incipient transition to a new phase.

The dependence Bc(ns), determined from the magnetization and magnetocapacitance
data, is represented in the inset to figure 3. The two data sets coincide and are described well
by a common linear fit which extrapolates to a density nχ close to (but slightly below) nc.
In the low-field limit (B < 1.5 T), the jump in dμ/dB shifts to the insulating regime, which
does not allow one to approach closer vicinity of nχ : based on the data obtained in the regime
of strong localization, one would not be able to make conclusions concerning properties of a
clean metallic electron system.

3.2. The effective mass in (1 0 0) silicon

The effective mass was measured by several methods. The first method was based on the
comparison of our data for zero-field resistivity with the theory [8]. It allows us to extract the
values of m and g separately [9]. In the second method, we have determined the effective mass
by analyzing temperature dependence of the weak-field Shubnikov–de Haas (SdH) oscillations
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The dashed lines are guides to the eye. The inset compares the so-obtained effective mass (the
dotted line) with that extracted from the analysis of SdH oscillations (circles). (From [9, 10].)

[10] (for details of the procedure, see the following subsection). The third method was based
on measurements of the magnetization in tilted magnetic fields described in detail in [11]. All
three methods gave quantitatively similar results.

In figure 4, we show the values g/g0 and m/mb as a function of the electron density (here
g0 = 2 is the g-factor in bulk silicon, mb is the band mass equal to 0.19me, and me is the free
electron mass). In the high ns region (relatively weak interactions), the enhancement of both
g and m is relatively small, both values slightly increasing with decreasing electron density
in agreement with earlier data [12]. Also, the renormalization of the g-factor is dominant
compared to that of the effective mass, which is consistent with theoretical studies [13].

In contrast, the renormalization at low ns (near the critical region), where rs � 1, is much
more striking. As the electron density is decreased, the renormalization of the effective mass
overshoots abruptly while that of the g-factor remains relatively small, g ≈ g0, without tending
to increase. Hence, the current analysis indicates that it is the effective mass, rather than the
g-factor, that is responsible for the drastically enhanced gm value near the metal–insulator
transition.

3.3. The effective mass in (1 1 1) silicon

The effective mass in (1 1 1) silicon MOSFETs was determined from the analysis of the
Shubnikov–de Haas oscillations. In figure 5(a), we show the magnetoresistance Rxx(B) for
ns = 8.4 × 1011 cm−2 at different temperatures. In weak magnetic fields, the SdH oscillation
period corresponds to a change of the filling factor ν = nshc/eB by �ν = 4, which indicates
that both the spin and valley degeneracies are equal to gs = gv = 2. The fact that the valley
degeneracy is equal to gv = 2, rather than gv = 6, is a long-standing problem which lacks a
definite answer so far [4].

In figure 5(b), we plot positions of the resistance minima in the (B, ns) plane. The
symbols are the experimental data and the lines are the expected positions of the cyclotron
and spin minima calculated according to the formula ns = νeB/hc. The resistance minima
are seen at ν = 6, 10, 14, 18, 22, 26 and 30 corresponding to spin splittings and at ν = 4,
8, 12, 16, 20, 24 and 28 corresponding to cyclotron gaps. The valley splitting is not seen
at low electron densities/weak magnetic fields, and the even numbers of the SdH oscillation
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positions of the cyclotron and spin minima calculated according to the formula ns = νeB/hc

(solid lines). (From [14].)
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Figure 6. Change of the amplitude of the weak-field SdH oscillations with temperature at different
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1.45 T (open circles), B2 = 1.74 T (crosses). The value of T for the B1 data is multiplied by the
ratio B2/B1. The solid lines are fits using equation (2). (From [14].)

minima confirm the valley degeneracy equal to gv = 2. The spin minima extend to appreciably
lower electron densities than the cyclotron minima, behavior that is similar to that observed in
(1 0 0) silicon MOSFETs [15]. This reveals that at the lowest electron densities, the spin
splitting is close to the cyclotron splitting, i.e., the product gm is strongly enhanced (by a
factor of about 3).

We would like to emphasize that unlike (1 0 0) silicon MOSFETs with mobilities in excess
of ≈ 2 × 104 cm2 V−1 s−1, the metallic temperature dependence of the B = 0 resistance is
not observed below T = 1.3 K in our samples.

A typical temperature dependence of the amplitude, A, of the weak-field (sinusoidal)
SdH oscillations for the normalized resistance, Rxx/R0 (where R0 is the average resistance),
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is displayed in figure 6. To determine the effective mass, we use the method of [16] extending
it to low electron densities and temperatures. We fit the data for A(T ) using the formula

A(T ) = A0
2π2kBT /h̄ωc

sinh(2π2kBT /h̄ωc)
,

A0 = 4 exp(−2π2kBTD/h̄ωc),

(2)

where ωc = eB/mc is the cyclotron frequency, and TD is the Dingle temperature [10, 17].
The latter is related to the level width through the expression TD = h̄/2πkBτ , where τ

is the quantum scattering time [12]. In principle, temperature-dependent τ may influence
damping of the SdH oscillations with temperature. In our experiment, however, possible
corrections to the mass value caused by the temperature dependence of τ (and hence TD) are
within the experimental uncertainty which is estimated by data dispersion at about 10%. Note
that the amplitude of the SdH oscillations follows the calculated curve down to the lowest
achieved temperatures, which confirms that the electrons were in a good thermal contact with
the bath and were not overheated. Applicability of equation (2) to strongly interacting 2D
electron systems is justified by the coincidence of the enhanced mass values obtained in (1 0 0)
silicon MOSFETs using a number of independent measurement methods including this one
[9–11].

In figure 7, we show the so-determined effective mass in units of the cyclotron mass in
bulk silicon, mb = 0.358me (where me is the free electron mass), as a function of (1/rs)

2 ∝ ns .
(For the two-valley case the ratio EC/EF that determines the system behavior is twice as large
as the Wigner–Seitz radius rs . Below, we will use the Wigner–Seitz radius with an average
dielectric constant of 7.7 as the interaction parameter.) The effective mass sharply increases
with decreasing electron density, its enhancement at low ns being consistent with that of gm.
The mass renormalization m/mb versus the interaction parameter rs is coincident within the
experimental uncertainty with that found in (1 0 0) silicon MOSFETs where mb = 0.19me is
approximately twice as small and the peak mobility is approximately one order of magnitude
as large. Thus, we arrive at a conclusion that the relative mass enhancement is determined by

8
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rs , being independent of a 2D electron system. Note that the highest accessible rs is different
in different 2D electron systems.

We now discuss the results obtained for the effective mass. We stress that the strongly
increased mass is observed in a dilute 2D electron system with relatively high disorder, as
inferred from both the relatively low zero-field mobility and the absence of metallic temperature
dependence of zero-field resistance. Moreover, the disorder does not at all influence the relative
enhancement of the mass as a function of the interaction parameter. This allows us to claim
that the mass enhancement is solely caused by electron–electron interactions. Our results
also add confidence that the dilute system behavior in the regime of the strongly enhanced
spin susceptibility χ ∝ gm—close to the onset of spontaneous spin polarization and Wigner
crystallization—is governed by the effective mass.

The finding that in dilute 2D electron systems the effective mass is strongly enhanced
remains basically unexplained, although there has been a good deal of theoretical work on the
subject (see [2, 3, 18] and references therein). The latest theoretical developments include
the following. Using a renormalization group analysis for multi-valley 2D systems, it has
been found that the effective mass dramatically increases at disorder-dependent density for
the metal–insulator transition while the g-factor remains nearly intact [19]. However, the
prediction of disorder-dependent effective mass is not confirmed by our data. In the Fermi-
liquid-based model of [20], a flattening at the Fermi energy in the spectrum that leads to a
diverging effective mass has been predicted. Still, the expected dependence of the effective
mass on temperature is not consistent with experimental findings.

Finally, we would like to note that moderate enhancements of the effective mass
m ≈ 1.5mb have been determined in 2D electron systems of AlAs quantum wells and
GaAs/AlGaAs heterostructures because the lowest accessible densities are still too high
[21, 22]. While the theories of, e.g., [23, 24] are capable of describing the experimental
m(ns) dependence at rs ∼ 1, their validity at larger values of the interaction parameter is a
problem.

4. Summary

We have found that in a dilute 2D electron system in (1 0 0) silicon, the Pauli spin susceptibility
critically increases upon approaching a certain sample-independent electron density, behavior
characteristic of a phase transition. This effect is not associated with the growth of the g-
factor which remains practically constant and close to its ‘non-interacting’ value. Rather, it
originates from dramatically increasing effective mass. A similar increase of the effective mass
was also observed in (1 1 1) silicon. Remarkably, the mass renormalization, m/mb, versus
the interaction parameter rs is in good agreement with that in (1 0 0) silicon MOSFETs. This
gives evidence that the relative mass enhancement is system and disorder independent, and
is solely determined by electron–electron interactions. The particular mechanism underlying
the effective mass enhancement remains to be seen.
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